Total No. of Questions-30 Total No. of Pages-4

Roll No.:

Half Yearly Examination 2019-20

Class: 12

http://www.rbseonline.com

	Class: 12	BSE-857
	Subject : Physics	12.00-837
Tir	ne : 3.15 Hours	M.M.: 40
Not	e: (i) Candidate/Student write their Roll No Question Paper Compulsory. (ii) All Questions are Compulsory.	umber on the
	 (iii) Marks of all questions are mentioned in question. (iv) Write all the Answer in the given Answer place. 	
1.	What is the ratio of different orbitals radius atom?	of hydrogen
2.	Draw the curve for change in magnetic field with the axis of current carrying coil.	ith distance at
3.	Define the diffraction of light.	1/2
4.	Write the Einstein's photoelectric equation.	_
5.	The force between two point charges is F in vac- plate inserted between these charges, than what value of new force?	cum. If a bras
6.	Write the Gaus's Law in magnetism.	
7/	Write the name of two materials whose resisti	1
	with temperature.	ivity increase
8.	What will be the angle of dip at that place when and horizontal component of Earth's magnetic fie	re the vertical

and horizontal component of Earth's magnetic field is same? 1 State the fleming's right hand rule to find the direction of duced current. 1

P.T.O.

ધુ ધ	http://www.rbseonline.com	Í.
7	(2)	,*
TI.	10. "The Pole segments of permanent magnets used galvonometer are concave shaped." Why?	l ir
ī t f	11. The magnetic susceptibility of a substance is 0.60 at temperature 120K. Calculate the magnetic susceptibility	ı
	12. Write the aim of Davison could be speed 6 × 10 ⁵ m/sec. Calculate the radius of the path	l Vith Of
	proton.	1
	14. Define the following:	1
	(i) Work function	
	(ii) Stopping Potential	
	15. Two coils have mutual inductance of 0.5H. If the current primary coil is raised to a value of 2A to 3A in 10 ⁻² second What is the induced emf in secondary coil? Calculate.	in ds. I
V	16. Find the de-Broglie wave length related to an electronaccelerated by 100 volt.	on 1
	17. The magnetic flux $\phi = 10t^2 + 5t + 1$ passes at the per pendicular of the coil, changes with respect to time. Here t is in sec and is in Wb. Then at $t = 5$ sec. Find the value of induced emf the coil.	¢
L	18. Write the causes of rainbow formation.	1
r and	20. In an experiments of potentiometer two cell of emf E ₁ & (E ₁ > E ₂) are in series. The balanced position is obtained at cm length of wire. If terminal after the content of the co	60
	of wire. Determine position is obtained at 20 cm leng	gth
5 Ag	field. between drift velocity and electr	ic ½

BSE-857

http://www.rbseonline.com

- 22. The axis of a polariser and an analyser are parallel to each other then the emitted intensity I₀ is obtained. If the analyser is rotated by 45° then find the value of the emitted intensity.
- 23. Two lenses of power 5D and 7D are in contact with each other forming a combination of lens. Calculate the power of the combination. Will the lens be converging or diverging?
- 24. A radioactive nucleus decay in the following way:

$$X \xrightarrow{\alpha} X_1 \xrightarrow{\beta_1} X_2 \xrightarrow{\alpha} X_3 \xrightarrow{\gamma} X_4$$

If the value of mass number & atomic humber of X are 180 and 72 respectively then find the mass number and atomic number of X_4 .

- 25. Derive the expression for capacitance of spherical capacitor.

 Draw necessary diagram. http://www.rbseonline.com 2
- 26. (i) Write the names of two moderators used in nuclear reactors.
 - (ii) Write the function of control rodes and coolant in the nuclear reactor. 1 + 1 = 2
- 27. Drive an expression for magnetic field at the axis in the toroid.Draw nesessary diagram.2

OR

With the help of Bio-Sawart's Law. Drive the expression for magnetic field at the centre of a current carrying circuler coil. Draw necessary diagram.

- 28. Draw the impedance diagram of LCR series circuit and find the expression for impedance and phase difference.
- 29. With the help of analytical treatment of interference, derive the condition to obtain constructive and distructive interference

http://www.rbseonline.com

http://www.rbseonline.com

(4)

OR

Draw a ray diagram for refraction at a spherical surface separating two mediums.

For refraction at a spherical surface derive the relation

$$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$$
 in object distance (u), image distance (v).

refractive index of medium $(n_1 \text{ and } n_2)$ and radius of curvative

(R). http://www.rbseonline.com

http://www.rbseonline.com

- 30. Obtain formula for electic field intensity due to an uniformly charged spherical shell by the help of Gauss law, when
 - (a) Point of observation is situated outside the spherical shell.
 - (b) Point of observation is situated inside the spherical shell.

 Draw the curve for change in electric field intensity with distance for charged spherical shell.

OR

Derive an expression for electric potential due to electric dipole at any point (r, θ) . Prove that the electric potential at point on axial line is maximum and at equatorial is zero.

BSE-857

http://www.rbseonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से